Abstract
Matrix diagonalization is almost always involved in computing the density matrix needed in quantum chemistry calculations. In the case of modest matrix sizes (≲4000), performance of traditional dense diagonalization algorithms on modern GPUs is underwhelming compared to the peak performance of these devices. This motivates the exploration of alternative algorithms better suited to these types of architectures. We newly derive, and present in detail, an existing Chebyshev expansion algorithm [Liang et al., J. Chem. Phys. 119, 4117-4125 (2003)] whose number of required matrix multiplications scales with the square root of the number of terms in the expansion. Focusing on dense matrices of modest size, our implementation on GPUs results in large speed ups when compared to diagonalization. Additionally, we improve upon this existing method by capitalizing on the inherent task parallelism and concurrency in the algorithm. This improvement is implemented on GPUs by using CUDA and HIP streams via the MAGMA library and leads to a significant speed up over the serial-only approach for smaller (≲1000) matrix sizes. Finally, we apply our technique to a model system with a high density of states around the Fermi level, which typically presents significant challenges.
Original language | English |
---|---|
Article number | 101101 |
Journal | Journal of Chemical Physics |
Volume | 159 |
Issue number | 10 |
DOIs | |
State | Published - Sep 14 2023 |
Funding
This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This research was supported by the Exascale Computing Project (Grant No. 17-SC-20-SC), a collaborative effort of the DOE Office of Science, and the National Nuclear Security Administration (NNSA). The authors thank Anders M. Niklasson for his helpful comments and suggestions on the manuscript. This manuscript has been co-authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy (DOE). The U.S. government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( https://www.energy.gov/doe-public-access-plan ).