A disordered rock salt anode for fast-charging lithium-ion batteries

Haodong Liu, Zhuoying Zhu, Qizhang Yan, Sicen Yu, Xin He, Yan Chen, Rui Zhang, Lu Ma, Tongchao Liu, Matthew Li, Ruoqian Lin, Yiming Chen, Yejing Li, Xing Xing, Yoonjung Choi, Lucy Gao, Helen Sung yun Cho, Ke An, Jun Feng, Robert KosteckiKhalil Amine, Tianpin Wu, Jun Lu, Huolin L. Xin, Shyue Ping Ong, Ping Liu

Research output: Contribution to journalArticlepeer-review

389 Scopus citations

Abstract

Rechargeable lithium-ion batteries with high energy density that can be safely charged and discharged at high rates are desirable for electrified transportation and other applications1–3. However, the sub-optimal intercalation potentials of current anodes result in a trade-off between energy density, power and safety. Here we report that disordered rock salt4,5 Li3+xV2O5 can be used as a fast-charging anode that can reversibly cycle two lithium ions at an average voltage of about 0.6 volts versus a Li/Li+ reference electrode. The increased potential compared to graphite6,7 reduces the likelihood of lithium metal plating if proper charging controls are used, alleviating a major safety concern (short-circuiting related to Li dendrite growth). In addition, a lithium-ion battery with a disordered rock salt Li3V2O5 anode yields a cell voltage much higher than does a battery using a commercial fast-charging lithium titanate anode or other intercalation anode candidates (Li3VO4 and LiV0.5Ti0.5S2)8,9. Further, disordered rock salt Li3V2O5 can perform over 1,000 charge–discharge cycles with negligible capacity decay and exhibits exceptional rate capability, delivering over 40 per cent of its capacity in 20 seconds. We attribute the low voltage and high rate capability of disordered rock salt Li3V2O5 to a redistributive lithium intercalation mechanism with low energy barriers revealed via ab initio calculations. This low-potential, high-rate intercalation reaction can be used to identify other metal oxide anodes for fast-charging, long-life lithium-ion batteries.

Original languageEnglish
Pages (from-to)63-67
Number of pages5
JournalNature
Volume585
Issue number7823
DOIs
StatePublished - Sep 3 2020

Funding

Acknowledgements Part of the work used the UCSD-MTI Battery Fabrication Facility and the UCSD-Arbin Battery Testing Facility. Z.Z., Yiming Chen and S.P.O. acknowledge funding from the US Department of Energy (DOE), Office of Science, Basic Energy Sciences under award number DE-SC0012118 for the DFT thermodynamics and kinetic studies, the Data Infrastructure Building Blocks (DIBBS) Local Spectroscopy Data Infrastructure (LSDI) project funded by National Science Foundation (NSF), under award number 1640899 for the FEFF X-ray absorption spectroscopy computations, and computing resources provided by the Triton Shared Computing Cluster (TSCC) at the University of California, San Diego, the National Energy Research Scientific Computing Center (NERSC), and the Extreme Science and Engineering Discovery Environment (XSEDE) under grant ACI-1548562. The X-ray characterization work at Lawrence Berkeley National Laboratory by X.H. and R.K. was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technologies Office, under the Advanced Battery Materials Research (BMR) Program of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. Neutron diffraction work used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. R.Z. was supported by H.L.X.’s startup funding. This research used resources of the Center for Functional Nanomaterials, which is a US DOE Office of Science Facility, at Brookhaven National Laboratory under contract number DE-SC0012704. The work at Argonne National Laboratory was supported by the US DOE, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. This research used resources of the Advanced Photon Source (9-BM and 17-BM), Argonne National Laboratory, a US DOE Office of Science User Facility operated for the US DOE Office of Science by the University of Chicago Argonne, LLC, under contract number DE-AC02-06CH11357. M.L. would like to acknowledge financial support from the National Sciences and Engineering Research Council (NSERC) of Canada. This research thanks A. Yakovenko, W. Xu and K. Wiaderek for their support of the in situ XRD experiments. H.L. thanks J. Huang for assistance with the electrochemical experiment. H.L. and Z.Z. thank I.-H. Chu for suggestions on the DFT calculations.

Fingerprint

Dive into the research topics of 'A disordered rock salt anode for fast-charging lithium-ion batteries'. Together they form a unique fingerprint.

Cite this