A dilatometric analysis of inverse bainite transformation

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

The unique two-stage dilatation curve observed during the inverse bainite transformation of a hypereutectoid low alloy steel is analyzed to understand the transformation kinetics. A new algorithm is proposed to extract the bainitic phase fractions from the raw dilatometry data. The proposed data extraction algorithm is generic that relies only on the density of phases involved in the transformation. To verify the extracted phase fraction, a kinetics model is developed using the principles of diffusion and Johnson–Mehl–Avrami–Kolmogorov kinetics. The predicted phase fractions by the kinetics model agree fairly well with the experimental phase fraction results from dilatometry, metallography, and XRD. The two-stage transformation can be explained by the kinetics of inverse bainite as a diffusion-controlled transformation product. The transformation proceeds in a para-equilibrium mode, involving only the diffusion of carbon at the inverse bainite/parent austenite interface.

Original languageEnglish
Pages (from-to)3692-3708
Number of pages17
JournalJournal of Materials Science
Volume53
Issue number5
DOIs
StatePublished - Mar 1 2018
Externally publishedYes

Fingerprint

Dive into the research topics of 'A dilatometric analysis of inverse bainite transformation'. Together they form a unique fingerprint.

Cite this