Abstract
Recently, transition-metal-based kagome metals have aroused much research interest as a novel platform to explore exotic topological quantum phenomena. Here we report on the synthesis, structure, and physical properties of a bilayer kagome lattice compound V3Sb2. The polycrystalline V3Sb2 samples were synthesized by conventional solid-state-reaction method in a sealed quartz tube at temperatures below 850 °C. Measurements of magnetic susceptibility and resistivity revealed consistently a density-wave-like transition at T dw ≈ 160 K with a large thermal hysteresis, even though some sample-dependent behaviors were observed presumably due to the different preparation conditions. Upon cooling through T dw, no strong anomaly in lattice parameters and no indication of symmetry lowering were detected in powder x-ray diffraction measurements. This transition can be suppressed completely by applying hydrostatic pressures of about 1.8 GPa, around which no sign of superconductivity was observed down to 1.5 K. Specific-heat measurements revealed a relatively large Sommerfeld coefficient γ = 18.5 mJ⋅mol-1⋅K-2, confirming the metallic ground state with moderate electronic correlations. Density functional theory calculations indicate that V3Sb2 shows a non-trivial topological crystalline property. Thus, our study makes V3Sb2 a new candidate of metallic kagome compound to study the interplay between density-wave-order, nontrivial band topology, and possible superconductivity.
Original language | English |
---|---|
Article number | 017106 |
Journal | Chinese Physics B |
Volume | 31 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2022 |
Keywords
- VSb
- charge density wave
- kagome metal
- pressure effect