A Deep Neural Architecture for Decision-Aware Meta-Review Generation

Asheesh Kumar, Tirthankar Ghosal, Asif Ekbal

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

Automatically generating meta-reviews from peer-reviews is a new and challenging task. Although close, the task is not precisely summarizing the peer-reviews. Usually, a conference chair or a journal editor writes a meta-review after going through the reviews written by the appointed reviewers, rounds of discussions with them, finally arriving at a consensus on the paper's fate. In essence, the meta-review texts are decision-aware, i.e., the meta reviewer already forms the decision before writing the meta-review, and the corresponding text conforms to that decision. We leverage this seed idea and design a deep neural architecture to generate decision-aware meta-reviews in this work. We propose a multi-encoder transformer network for peer-review decision prediction and subsequent meta-review generation. We analyze our output quantitatively and qualitatively and argue that quantitative text summarization metrics are not suitable for evaluating the generated meta-reviews. Our proposed model performs comparably with the recent state-of-the-art text summarization approaches. Qualitative evaluation of our model-generated output is encouraging on an open access peer reviews dataset that we curate from the open review platform. We make our data and codes available1.

Original languageEnglish
Title of host publicationProceedings - 2021 ACM/IEEE Joint Conference on Digital Libraries, JCDL 2021
EditorsJ. Stephen Downie, Dana McKay, Hussein Suleman, David M. Nichols, Faryaneh Poursardar
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages222-225
Number of pages4
ISBN (Electronic)9781665417709
DOIs
StatePublished - 2021
Externally publishedYes
Event21st ACM/IEEE Joint Conference on Digital Libraries, JCDL 2021 - Virtual, Online, United States
Duration: Sep 27 2021Sep 30 2021

Publication series

NameProceedings of the ACM/IEEE Joint Conference on Digital Libraries
Volume2021-September
ISSN (Print)1552-5996

Conference

Conference21st ACM/IEEE Joint Conference on Digital Libraries, JCDL 2021
Country/TerritoryUnited States
CityVirtual, Online
Period09/27/2109/30/21

Keywords

  • decision prediction
  • deep learning
  • meta-review generation

Fingerprint

Dive into the research topics of 'A Deep Neural Architecture for Decision-Aware Meta-Review Generation'. Together they form a unique fingerprint.

Cite this