TY - GEN
T1 - A Data-Driven Approach to Nation-Scale Building Energy Modeling
AU - Berres, Andy S.
AU - Bass, Brett C.
AU - Adams, Mark B.
AU - Garrison, Eric
AU - New, Joshua R.
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021
Y1 - 2021
N2 - In 2019, 125 million U.S. residential and commercial buildings consumed 412 billion in energy bills. These buildings currently consume 40% of the nation's primary energy, 73% of electricity, 80% of energy during peak electric grid use, and responsible for 39% of greenhouse gas emissions [14]. Urban-scale building energy modeling has grown significantly in the past decade, allowing individual campuses or communities of buildings to be modeled, simulated, and cost-effective solutions for intelligent management to be identified and implemented. While traditionally limited to individual counties and usually less than 2,000 buildings, the Automatic Building Energy Modeling (AutoBEM) soft-ware suite has been developed to process unconventional, nation-scale data sources to generate unique OpenStudio and EnergyPlus models of each building. Through the use of High Performance Computing (HPC) resources, every U.S. building has been simulated. This paper showcases the data layout, node partitioning, algorithmic approaches, and analytic results that were used to create, share, and analyze 124.4 million U.S. building models.
AB - In 2019, 125 million U.S. residential and commercial buildings consumed 412 billion in energy bills. These buildings currently consume 40% of the nation's primary energy, 73% of electricity, 80% of energy during peak electric grid use, and responsible for 39% of greenhouse gas emissions [14]. Urban-scale building energy modeling has grown significantly in the past decade, allowing individual campuses or communities of buildings to be modeled, simulated, and cost-effective solutions for intelligent management to be identified and implemented. While traditionally limited to individual counties and usually less than 2,000 buildings, the Automatic Building Energy Modeling (AutoBEM) soft-ware suite has been developed to process unconventional, nation-scale data sources to generate unique OpenStudio and EnergyPlus models of each building. Through the use of High Performance Computing (HPC) resources, every U.S. building has been simulated. This paper showcases the data layout, node partitioning, algorithmic approaches, and analytic results that were used to create, share, and analyze 124.4 million U.S. building models.
UR - http://www.scopus.com/inward/record.url?scp=85125353319&partnerID=8YFLogxK
U2 - 10.1109/BigData52589.2021.9671786
DO - 10.1109/BigData52589.2021.9671786
M3 - Conference contribution
AN - SCOPUS:85125353319
T3 - Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021
SP - 1558
EP - 1565
BT - Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021
A2 - Chen, Yixin
A2 - Ludwig, Heiko
A2 - Tu, Yicheng
A2 - Fayyad, Usama
A2 - Zhu, Xingquan
A2 - Hu, Xiaohua Tony
A2 - Byna, Suren
A2 - Liu, Xiong
A2 - Zhang, Jianping
A2 - Pan, Shirui
A2 - Papalexakis, Vagelis
A2 - Wang, Jianwu
A2 - Cuzzocrea, Alfredo
A2 - Ordonez, Carlos
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 IEEE International Conference on Big Data, Big Data 2021
Y2 - 15 December 2021 through 18 December 2021
ER -