A conceptual study of a supercritical CO2-cooled micro modular reactor

Hwanyeal Yu, Donny Hartanto, Jangsik Moon, Yonghee Kim

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

A neutronics conceptual study of a supercritical CO2-cooled micro modular reactor (MMR) has been performed in this work. The suggested MMR is an extremely compact and truck-transportable nuclear reactor. The thermal power of the MMR is 36.2 MWth and it is designed to have a 20-year lifetime without refueling. A salient feature of the MMR is that all the components including the generator are integrated in a small reactor vessel. For a minimal volume and long lifetime of the MMR core, a fast neutron spectrum is utilized in this work. To enhance neutron economy and maximize the fuel volume fraction in the core, a high-density uranium mono-nitride U15N fuel is used in the fast-spectrum MMR. Unlike the conventional supercritical CO2-cooled fast reactors, a replaceable fixed absorber (RFA) is introduced in a unique way to minimize the excess reactivity and the power peaking factor of the core. For a compact core design, the drum-type control absorber is adopted as the primary reactivity control mechanism. In this study, the neutronics analyses and depletions have been performed by using the continuous energy Monte Carlo Serpent code with the evaluated nuclear data file ENDF/B-VII.1 Library. The MMR core is characterized in view of several important safety parameters such as control system worth, fuel temperature coefficient (FTC) and coolant void reactivity (CVR), etc. In addition, a preliminary thermal-hydraulic analysis has also been performed for the hottest channel of the Korea Advanced Institute of Science and Technology (KAIST) MMR.

Original languageEnglish
Pages (from-to)13938-13952
Number of pages15
JournalEnergies
Volume8
Issue number12
DOIs
StatePublished - 2015
Externally publishedYes

Keywords

  • Control drum
  • Micro modular reactor (MMR)
  • Replaceable fixed absorber (RFA)
  • Serpent
  • Supercritical CO coolant
  • Uranium mono-nitride (UN) fuel

Fingerprint

Dive into the research topics of 'A conceptual study of a supercritical CO2-cooled micro modular reactor'. Together they form a unique fingerprint.

Cite this