Abstract
Axial flux machines have attracted a lot of interest in the recent years as potential high torque low weight candidates for use as traction motors in electric vehicles (EV). This paper compares axial and radial flux machines for electric vehicle applications. An external rotor radial flux machine with a Halbach array surface permanent magnet rotor and concentrated windings is chosen as a baseline to compare with axial flux designs. Both axial and radial flux motors are sized to meet the EV same requirements. Multi-objective design optimization using differential evolution minimizing loss and volume is carried out for both types of machines. Hundreds of candidate designs for each type of machine are analyzed, pareto fronts are identified and compared. The potential advantages of axial flux machines are evaluated and quantified.
Original language | English |
---|---|
Title of host publication | 2023 IEEE International Electric Machines and Drives Conference, IEMDC 2023 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9798350398991 |
DOIs | |
State | Published - 2023 |
Event | 2023 IEEE International Electric Machines and Drives Conference, IEMDC 2023 - San Francisco, United States Duration: May 15 2023 → May 18 2023 |
Publication series
Name | 2023 IEEE International Electric Machines and Drives Conference, IEMDC 2023 |
---|
Conference
Conference | 2023 IEEE International Electric Machines and Drives Conference, IEMDC 2023 |
---|---|
Country/Territory | United States |
City | San Francisco |
Period | 05/15/23 → 05/18/23 |
Funding
This manuscript has been authored by UT-Battelle LLC under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doepublic- access-plan) This manuscript has been authored by UT-Battelle LLC under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan)
Keywords
- Permanent magnet machine
- axial flux motors