TY - JOUR
T1 - A Comparative Study of the Perceptual Sensitivity of Topological Visualizations to Feature Variations
AU - Athawale, Tushar M.
AU - Triana, Bryan
AU - Kotha, Tanmay
AU - Pugmire, Dave
AU - Rosen, Paul
N1 - Publisher Copyright:
© 1995-2012 IEEE.
PY - 2024/1/1
Y1 - 2024/1/1
N2 - Color maps are a commonly used visualization technique in which data are mapped to optical properties, e.g., color or opacity. Color maps, however, do not explicitly convey structures (e.g., positions and scale of features) within data. Topology-based visualizations reveal and explicitly communicate structures underlying data. Although our understanding of what types of features are captured by topological visualizations is good, our understanding of people's perception of those features is not. This paper evaluates the sensitivity of topology-based isocontour, Reeb graph, and persistence diagram visualizations compared to a reference color map visualization for synthetically generated scalar fields on 2-manifold triangular meshes embedded in 3D. In particular, we built and ran a human-subject study that evaluated the perception of data features characterized by Gaussian signals and measured how effectively each visualization technique portrays variations of data features arising from the position and amplitude variation of a mixture of Gaussians. For positional feature variations, the results showed that only the Reeb graph visualization had high sensitivity. For amplitude feature variations, persistence diagrams and color maps demonstrated the highest sensitivity, whereas isocontours showed only weak sensitivity. These results take an important step toward understanding which topology-based tools are best for various data and task scenarios and their effectiveness in conveying topological variations as compared to conventional color mapping.
AB - Color maps are a commonly used visualization technique in which data are mapped to optical properties, e.g., color or opacity. Color maps, however, do not explicitly convey structures (e.g., positions and scale of features) within data. Topology-based visualizations reveal and explicitly communicate structures underlying data. Although our understanding of what types of features are captured by topological visualizations is good, our understanding of people's perception of those features is not. This paper evaluates the sensitivity of topology-based isocontour, Reeb graph, and persistence diagram visualizations compared to a reference color map visualization for synthetically generated scalar fields on 2-manifold triangular meshes embedded in 3D. In particular, we built and ran a human-subject study that evaluated the perception of data features characterized by Gaussian signals and measured how effectively each visualization technique portrays variations of data features arising from the position and amplitude variation of a mixture of Gaussians. For positional feature variations, the results showed that only the Reeb graph visualization had high sensitivity. For amplitude feature variations, persistence diagrams and color maps demonstrated the highest sensitivity, whereas isocontours showed only weak sensitivity. These results take an important step toward understanding which topology-based tools are best for various data and task scenarios and their effectiveness in conveying topological variations as compared to conventional color mapping.
KW - Perception & cognition
KW - comparison and similarity
KW - computational topology-based techniques
UR - http://www.scopus.com/inward/record.url?scp=85176347424&partnerID=8YFLogxK
U2 - 10.1109/TVCG.2023.3326592
DO - 10.1109/TVCG.2023.3326592
M3 - Article
C2 - 37871073
AN - SCOPUS:85176347424
SN - 1077-2626
VL - 30
SP - 1074
EP - 1084
JO - IEEE Transactions on Visualization and Computer Graphics
JF - IEEE Transactions on Visualization and Computer Graphics
IS - 1
ER -