A communication-Avoiding 3D LU factorization algorithm for sparse matrices

Piyush Sao, Xiaoye Sherry Li, Richard Vuduc

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

19 Scopus citations

Abstract

We propose a new algorithm to improve the strong scalability of right-looking sparse LU factorization on distributed memory systems. Our 3D sparse LU algorithm uses a three-dimensional MPI process grid, aggressively exploits elimination tree parallelism and trades off increased memory for reduced per-process communication. We also analyze the asymptotic improvements for planar graphs (e.g., from 2D grid or mesh domains) and certain non-planar graphs (specifically for 3D grids and meshes). For planar graphs with n vertices, our algorithm reduces communication volume asymptotically in n by a factor of O{log n} and latency by a factor of O{log n}. For non-planar cases, our algorithm can reduce the per-process communication volume by 3× and latency by O{n1/3} times. In all cases, the memory needed to achieve these gains is a constant factor. We implemented our algorithm by extending the 2D data structure used in superLU. Our new 3D code achieves speedups up to 27× for planar graphs and up to 3.3× for non-planar graphs over the baseline 2D superLU when run on 24,000 cores of a Cray XC30.

Original languageEnglish
Title of host publicationProceedings - 2018 IEEE 32nd International Parallel and Distributed Processing Symposium, IPDPS 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages908-919
Number of pages12
ISBN (Print)9781538643686
DOIs
StatePublished - Aug 3 2018
Externally publishedYes
Event32nd IEEE International Parallel and Distributed Processing Symposium, IPDPS 2018 - Vancouver, Canada
Duration: May 21 2018May 25 2018

Publication series

NameProceedings - 2018 IEEE 32nd International Parallel and Distributed Processing Symposium, IPDPS 2018

Conference

Conference32nd IEEE International Parallel and Distributed Processing Symposium, IPDPS 2018
Country/TerritoryCanada
CityVancouver
Period05/21/1805/25/18

Keywords

  • Communication avoiding algorithm
  • Nested dissection
  • Sparse Gaussian elimination
  • Sparse direct solver

Fingerprint

Dive into the research topics of 'A communication-Avoiding 3D LU factorization algorithm for sparse matrices'. Together they form a unique fingerprint.

Cite this