A comfort model simplification for tight integration with grid service optimizations

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Localized generation, storage, and intelligent power electronics are increasingly being integrated into buildings. The excess storage, thermal, and generation capacity can be used to develop new markets for ancillary services such as peak reduction, voltage and frequency support, or load flattening. Widespread participation in these markets will make the power grid more resilient. However, widespread participation in these markets will require a simple and intuitive control over the excess capacity by the building occupants. Most importantly for adopting these technologies, participation in these markets should not require sacrificing occupant comfort. Many of the proposed control and optimization technologies for supplying the ancillary services do not explicitly incorporate occupant comfort into their models and when they do, generally utilize a rigid constraint on the indoor air temperature set a priori. This reduces flexibility in using excess thermal capacity. It also cannot take into account uncertainties in local factors that affect thermal comfort such as clothing insulation or relative humidity. In this paper, we present and justify some assumptions that simplify the standard predictors of thermal comfort. We also develop a regression model of the thermal comfort that is linear with respect to the indoor air temperature. Next we develop the concept of thermal comfort variation that eliminates the dependence of the thermal comfort on uncertain thermal comfort factors. Then, we present a quadratic program utilizing the thermal comfort variation in both the objective function and as a constraint. Finally, we show the results of a time-of-use cost optimization that utilizes the simplified thermal comfort model.

Original languageEnglish
Title of host publication2020 IEEE Power and Energy Society General Meeting, PESGM 2020
PublisherIEEE Computer Society
ISBN (Electronic)9781728155081
DOIs
StatePublished - Aug 2 2020
Event2020 IEEE Power and Energy Society General Meeting, PESGM 2020 - Montreal, Canada
Duration: Aug 2 2020Aug 6 2020

Publication series

NameIEEE Power and Energy Society General Meeting
Volume2020-August
ISSN (Print)1944-9925
ISSN (Electronic)1944-9933

Conference

Conference2020 IEEE Power and Energy Society General Meeting, PESGM 2020
Country/TerritoryCanada
CityMontreal
Period08/2/2008/6/20

Funding

VIII. ACKNOWLEDGEMENTS This material is based upon work supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technology Office under contract DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

FundersFunder number
US Department of Energy
U.S. Department of Energy
Office of Energy Efficiency and Renewable EnergyDE-AC05-00OR22725

    Keywords

    • Ancillary services
    • Grid services
    • Optimization
    • Thermal comfort

    Fingerprint

    Dive into the research topics of 'A comfort model simplification for tight integration with grid service optimizations'. Together they form a unique fingerprint.

    Cite this