A burnup credit approach for margin estimation of loaded boiling water reactor canisters in UNF-ST&Dards

Justin Clarity, Kaushik Banerjee, William Marshall, Henrik Liljenfeldt

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper discusses the modeling approach applied in the Used Nuclear Fuel Storage, Transportation, & Disposal Analysis Resource and Data System (UNF-ST&DARDS) to take credit for the reduced reactivity associated with the burnup of boiling water reactor (BWR) fuel for canister-specific as-loaded criticality analysis. Burnup credit is routinely used for the analysis of pressurized water reactor (PWR) spent nuclear fuel (SNF) storage (wet), transportation, and disposal. The fresh fuel assumption has historically been applied to BWR SNF criticality analyses for dry storage and transportation, and the peak reactivity method of burnup credit has been applied to pool storage. The fresh fuel assumption ignores the credit for gadolinium burnable absorbers in BWR fuel, as well as the burnup of the fuel, and is therefore conservative. This work employs the framework traditionally used for PWR burnup credit analyses and applies available data and recently published regulatory guidance to justify a new approach to model the as-loaded burnup and enrichment of SNF assemblies in currently loaded dry casks. The following features of this criticality analysis approach are presented in this paper: (1) selection of axial burnup profiles for BWR fuel from publicly available sources using methods derived from recently published research [1], (2) justification of the selected axial burnup profiles as relevant to all types of BWR fuel, (3) justification for modeling the fuel assemblies with a uniform axial and radial enrichment, and (4) justification for modeling the axial void profile and control blade insertion during depletion. This analysis approach was used to evaluate 153 already-loaded BWR casks at 8 sites as a function of time in UNF-ST&DARDS. Finally, the results of the as-loaded criticality safety margin assessments are presented. The results show the keff calculated for storage and transportation cases range from 0.71 to 0.83, and the eigenvalues calculated for the disposal cases range from 0.85 to 1.03, though the highest cases are dominated by very limiting hypothetical damaged fuel assumptions.

Original languageEnglish
Title of host publicationANS NCSD - 2017 Nuclear Criticality Safety Division Topical Meeting
Subtitle of host publicationCriticality Safety - Pushing Boundaries by Modernizing and Integrating Data, Methods, and Regulations
PublisherAmerican Nuclear Society
ISBN (Electronic)9780894487408
StatePublished - 2017
Event2017 Nuclear Criticality Safety Division Topical Meeting: Criticality Safety - Pushing Boundaries by Modernizing and Integrating Data, Methods, and Regulations, NCSD 2017 - Carlsbad, United States
Duration: Sep 10 2017Sep 15 2017

Publication series

NameANS NCSD - 2017 Nuclear Criticality Safety Division Topical Meeting: Criticality Safety - Pushing Boundaries by Modernizing and Integrating Data, Methods, and Regulations
Volume2017-September

Conference

Conference2017 Nuclear Criticality Safety Division Topical Meeting: Criticality Safety - Pushing Boundaries by Modernizing and Integrating Data, Methods, and Regulations, NCSD 2017
Country/TerritoryUnited States
CityCarlsbad
Period09/10/1709/15/17

Bibliographical note

Publisher Copyright:
© 2017 American Nuclear Society. All Rights Reserved.

Keywords

  • Boiling water reactor
  • Burnup credit
  • Spent nuclear fuel

Fingerprint

Dive into the research topics of 'A burnup credit approach for margin estimation of loaded boiling water reactor canisters in UNF-ST&Dards'. Together they form a unique fingerprint.

Cite this