Abstract
High-temperature molten salt research is undergoing somewhat of a renaissance these days due to the apparent advantage of these systems in areas related to clean and sustainable energy harvesting and transfer. In many ways, this is a mature field with decades if not already a century of outstanding work devoted to it. Yet, much of this work was done with pioneering experimental and computational setups that lack the current day capabilities of synchrotrons and high-performance-computing systems resulting in deeply entrenched results in the literature that when carefully inspected may require revision. Yet, in other cases, access to isotopically substituted ions make those pioneering studies very unique and prohibitively expensive to carry out nowadays. There are many review articles on molten salts, some of them cited in this perspective, that are simply outstanding and we dare not try to outdo those. Instead, having worked for almost a couple of decades already on their low-temperature relatives, the ionic liquids, this is the perspective article that some of the authors would have wanted to read when embarking on their research journey on high-temperature molten salts. We hope that this will serve as a simple guide to those expanding from research on ionic liquids to molten salts andvice versa, particularly, when looking into their bulk structural features. The article does not aim at being comprehensive but instead focuses on selected topics such as short- and intermediate-range order, the constraints on force field requirements, and other details that make the high- and low-temperature ionic melts in some ways similar but in others diametrically opposite.
Original language | English |
---|---|
Pages (from-to) | 6359-6372 |
Number of pages | 14 |
Journal | Journal of Physical Chemistry B |
Volume | 125 |
Issue number | 24 |
DOIs | |
State | Published - Jun 24 2021 |
Funding
This work was supported as part of the Molten Salts in Extreme Environments (MSEE) Energy Frontier Research Center, funded by the U.S. Department of Energy Office of Science. MSEE work at the University of Iowa was supported via subcontracts from Brookhaven National Laboratory, which is operated under DOE Contract No. DE-SC0012704. Oak Ridge National Laboratory is operated under DOE Contract No. DE-AC05-00OR22725. Being a perspectives article, this work discusses data and includes figures published previously by us and others. Funding sources for those works were acknowledged in the original publications. This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ). Acknowledgments