A benchmark dataset for Hydrogen Combustion

Xingyi Guan, Akshaya Das, Christopher J. Stein, Farnaz Heidar-Zadeh, Luke Bertels, Meili Liu, Mojtaba Haghighatlari, Jie Li, Oufan Zhang, Hongxia Hao, Itai Leven, Martin Head-Gordon, Teresa Head-Gordon

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

The generation of reference data for deep learning models is challenging for reactive systems, and more so for combustion reactions due to the extreme conditions that create radical species and alternative spin states during the combustion process. Here, we extend intrinsic reaction coordinate (IRC) calculations with ab initio MD simulations and normal mode displacement calculations to more extensively cover the potential energy surface for 19 reaction channels for hydrogen combustion. A total of ∼290,000 potential energies and ∼1,270,000 nuclear force vectors are evaluated with a high quality range-separated hybrid density functional, ωB97X-V, to construct the reference data set, including transition state ensembles, for the deep learning models to study hydrogen combustion reaction.

Original languageEnglish
Article number215
JournalScientific Data
Volume9
Issue number1
DOIs
StatePublished - Dec 2022

Funding

We thank the National Science Foundation under grant CHE-1955643. F.H-Z. acknowledges financial support from Natural Sciences and Engineering Research Council (NSERC) of Canada. M. Liu thanks the China Scholarship Council for a visiting scholar fellowship. C.J.S. acknowledges funding by the Ministry of Innovation, Science and Research of North Rhine-Westphalia (\u201CNRW R\u00FCckkehrerprogramm\u201D) and an Early Postdoc Mobility fellowship from the Swiss National Science Foundation. This research used computational resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Fingerprint

Dive into the research topics of 'A benchmark dataset for Hydrogen Combustion'. Together they form a unique fingerprint.

Cite this