Abstract
T cells can be controllably stimulated through antigen-specific or nonspecific protocols. Accompanying functional hallmarks of T cell activation can include cytoskeletal reorganization, cell size increase, and cytokine secretion. Photon-induced near-field electron microscopy (PINEM) is used to image and quantify evanescent electric fields at the surface of T cells as a function of various stimulation conditions. While PINEM signal strength scales with multiple of the biophysical changes associated with T cell functional activation, it mostly strongly correlates with antigen-engagement of the T cell receptors, even under conditions that do not lead to functional T cell activation. PINEM image analysis suggests that a stimulationinduced reorganization of T cell surface structure, especially over length scales of a few hundred nanometers, is the dominant contributor to these PINEM signal changes. These experiments reveal that PINEM can provide a sensitive label-free probe of nanoscale cellular surface structures.
Original language | English |
---|---|
Pages (from-to) | 22014-22019 |
Number of pages | 6 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 116 |
Issue number | 44 |
DOIs | |
State | Published - Oct 29 2019 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2019 National Academy of Sciences. All rights reserved.
Keywords
- Electron microscopy
- Electron-photon coupling
- PINEM
- T cell activation
- T cell receptor