4-twist helix snake to maintain polarization in multi-GeV proton rings

F. Antoulinakis, Y. Chen, A. Dutton, E. Rossi De La Fuente, S. Haupert, E. A. Ljungman, P. D. Myers, J. K. Thompson, A. Tai, C. A. Aidala, E. D. Courant, A. D. Krisch, M. A. Leonova, W. Lorenzon, R. S. Raymond, D. W. Sivers, V. K. Wong, T. Yang, Y. S. Derbenev, V. S. MorozovA. M. Kondratenko

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Solenoid Siberian snakes have successfully maintained polarization in particle rings below 1 GeV, but never in multi-GeV rings, because the spin rotation by a solenoid is inversely proportional to the beam momentum. High energy rings, such as Brookhaven's 255 GeV Relativistic Heavy Ion Collider (RHIC), use only odd multiples of pairs of transverse B-field Siberian snakes directly opposite each other. When it became impractical to use a pair of Siberian Snakes in Fermilab's 120 GeV/c Main Injector, we searched for a new type of single Siberian snake that could overcome all depolarizing resonances in the 8.9-120 GeV/c range. We found that a snake made of one 4-twist helix and 2 dipoles could maintain the polarization. This snake design could solve the long-standing problem of significant polarization loss during acceleration of polarized protons from a few GeV to tens of GeV, such as in the AGS, before injecting them into multi-hundred GeV rings, such as RHIC.

Original languageEnglish
Article number091003
JournalPhysical Review Accelerators and Beams
Volume20
Issue number9
DOIs
StatePublished - Sep 27 2017
Externally publishedYes

Fingerprint

Dive into the research topics of '4-twist helix snake to maintain polarization in multi-GeV proton rings'. Together they form a unique fingerprint.

Cite this