Abstract
X-ray computed tomography (XCT) is a key tool in non-destructive evaluation of additively manufactured (AM) parts, allowing for internal inspection and defect detection. Despite its widespread use, obtaining high-resolution CT scans can be extremely time consuming. This issue can be mitigated by performing scans at lower resolutions; however, reducing the resolution compromises spatial detail, limiting the accuracy of defect detection. Super-resolution algorithms offer a promising solution for overcoming resolution limitations in XCT reconstructions of AM parts, enabling more accurate detection of defects. While 2D super-resolution methods have demonstrated state-of-the-art performance on natural images, they tend to under-perform when directly applied to XCT slices. On the other hand, 3D super-resolution methods are computationally expensive, making them infeasible for large-scale applications. To address these challenges, we propose a 2.5D super-resolution approach tailored for XCT of AM parts. Our method enhances the resolution of individual slices by leveraging multi-slice information from neighboring 2D slices without the significant computational overhead of full 3D methods. Specifically, we use neighboring low-resolution slices to super-resolve the center slice, exploiting inter-slice spatial context while maintaining computational efficiency. This approach bridges the gap between 2D and 3D methods, offering a practical solution for high-throughput defect detection in AM parts.
| Original language | English |
|---|---|
| Title of host publication | Conference Record of the 58th Asilomar Conference on Signals, Systems and Computers, ACSSC 2024 |
| Editors | Michael B. Matthews |
| Publisher | IEEE Computer Society |
| Pages | 308-313 |
| Number of pages | 6 |
| ISBN (Electronic) | 9798350354058 |
| DOIs | |
| State | Published - 2024 |
| Event | 58th Asilomar Conference on Signals, Systems and Computers, ACSSC 2024 - Hybrid, Pacific Grove, United States Duration: Oct 27 2024 → Oct 30 2024 |
Publication series
| Name | Conference Record - Asilomar Conference on Signals, Systems and Computers |
|---|---|
| ISSN (Print) | 1058-6393 |
Conference
| Conference | 58th Asilomar Conference on Signals, Systems and Computers, ACSSC 2024 |
|---|---|
| Country/Territory | United States |
| City | Hybrid, Pacific Grove |
| Period | 10/27/24 → 10/30/24 |
Funding
This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). Research sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Materials and Manufacturing Technologies Office (AMMTO), under contract DE-AC05-00OR22725 with UT-Battelle, LLC. The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Keywords
- X-ray CT
- additive manufacturing
- deep learning
- non-destructive evaluation
- super-resolution