TY - JOUR
T1 - 1,4,7-Triazacyclononane-Based Chelators for the Complexation of [186Re]Re- and [99mTc]Tc-Tricarbonyl Cores
AU - Hoerres, Rebecca
AU - Hennkens, Heather M.
N1 - Publisher Copyright:
© 2023 The Authors. Published by American Chemical Society
PY - 2023/12/18
Y1 - 2023/12/18
N2 - Metal complexes with the general formula [MI(CO)3(k3-L)]+, where M = Re, 186Re, or 99mTc and L = 1,4,7-triazacyclononane (TACN), NOTA, or NODAGA chelators, have previously been conjugated to peptide-based biological targeting vectors and investigated as potential theranostic radiopharmaceuticals. The promising results demonstrated by these bioconjugate complexes prompted our exploration of other TACN-based chelators for suitability for (radio)labeling with the [M(CO)3]+ core. In this work, we investigated the role of the TACN pendant arms in complexation of the [M(CO)3]+ core through (radio)labeling of TACN chelators bearing acid, ester, mixed acid-ester, or no pendant functional groups. The chelators were synthesized from TACN, characterized, and (radio)labeled with nonradioactive Re-, [186Re]Re-, and [99mTc]Tc-tricarbonyl cores. The nonfunctionalized (3), diacid (4), and monoacid monoester (7 and 8) chelators underwent direct labeling, while the diester (M-5 and M-6) complexes required indirect synthesis from M-4. All six chelators demonstrated stable radiometal coordination. The ester-bearing derivatives, which exhibited more lipophilic character than their acid-bearing counterparts, were prone to ester hydrolysis over time, making them less suitable for radiopharmaceutical development. These studies confirmed that the TACN pendant functional groups were key to efficient labeling with the [M(CO)3]+ core, with ionizable pendant arms favored over nonionizable pendant arms.
AB - Metal complexes with the general formula [MI(CO)3(k3-L)]+, where M = Re, 186Re, or 99mTc and L = 1,4,7-triazacyclononane (TACN), NOTA, or NODAGA chelators, have previously been conjugated to peptide-based biological targeting vectors and investigated as potential theranostic radiopharmaceuticals. The promising results demonstrated by these bioconjugate complexes prompted our exploration of other TACN-based chelators for suitability for (radio)labeling with the [M(CO)3]+ core. In this work, we investigated the role of the TACN pendant arms in complexation of the [M(CO)3]+ core through (radio)labeling of TACN chelators bearing acid, ester, mixed acid-ester, or no pendant functional groups. The chelators were synthesized from TACN, characterized, and (radio)labeled with nonradioactive Re-, [186Re]Re-, and [99mTc]Tc-tricarbonyl cores. The nonfunctionalized (3), diacid (4), and monoacid monoester (7 and 8) chelators underwent direct labeling, while the diester (M-5 and M-6) complexes required indirect synthesis from M-4. All six chelators demonstrated stable radiometal coordination. The ester-bearing derivatives, which exhibited more lipophilic character than their acid-bearing counterparts, were prone to ester hydrolysis over time, making them less suitable for radiopharmaceutical development. These studies confirmed that the TACN pendant functional groups were key to efficient labeling with the [M(CO)3]+ core, with ionizable pendant arms favored over nonionizable pendant arms.
UR - http://www.scopus.com/inward/record.url?scp=85172930035&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.3c01934
DO - 10.1021/acs.inorgchem.3c01934
M3 - Article
C2 - 37683190
AN - SCOPUS:85172930035
SN - 0020-1669
VL - 62
SP - 20688
EP - 20698
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 50
ER -