RAPID: Using location-based big-data to model people's mobility patterns during the COVID-19 outbreak

Project: Research

Project Details

Description

The outbreak of COVID-19 in the U.S. provides an important opportunity for researchers to study the impacts of a rapidly expanding pandemic on human mobility. This research investigates how to measure changes in collective movement of people in response to the fast-evolving COVID-19 outbreak using large datasets of passively collected location data. It examines how locations within a state respond to public policy implementation and times of critical public messaging. Detailed knowledge on movement patterns of people can help public officials identify hotspots and critically isolated populations, as well as shed light on those groups who continue to travel for work or other purposes. This research contributes to improving the public response to an emergency and contributes to bridging different stakeholder mitigation strategies.

Detailed knowledge of how people respond to a fast-spreading global pandemic is very limited and our understanding of these responses is mostly for small areas. This research will use a near real-time location-based dataset passively collected through the use of location-based apps during the period of pandemic. The project will develop scalable, big location-based algorithms to extract trips and examine the evolution of mobility patterns throughout the pandemic, and identify different mobility patterns. We will develop map-reduce based distributed algorithms to scale up mobility measure calculations based on the big location-based data as well as develop entropy measures to capture the time-varying characteristics associated with the travel patterns, and design strategies to correct biases that may be present in the location data. The methods and results of this research will be useful for understanding mobility during other hazards that affect communities, such as severe flooding to understand how travel is changed as a result of imperatives stemming from both the hazard and policy directives.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

StatusFinished
Effective start/end date04/1/2003/31/22

Funding

  • National Science Foundation

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.