A team of ORNL researchers have developed a carbon nanospike catalyst—a nanotechnology-based electrocatalyst composed of carbon, nitrogen and copper—that can convert carbon dioxide and water to ethanol. The catalyst is made of a highly textured form of graphene—a type of single-layer carbon—that is arranged into atomically sharp spikes. The spikes are embedded with copper nanoparticles; together they form a sequential catalyst that synthesizes ethanol.
Ethanol is an affordable, high-energy-density liquid fuel that could be a viable alternative to gasoline for internal combustion engines. Converting water and waste CO2 to ethanol also removes the harmful greenhouse gas from the air. Using renewable electricity to power the reaction makes the process carbon neutral.
Funding for the project came from the DOE Office of Science and the Technology Commercialization Fund and the DOE Office of Fossil Energy.
ORNL’s Adam Rondinone and Yang Song, formerly of ORNL, led the development team, which included ORNL’s Dale Hensley and Peter Bonnesen.