2019 R&D 100 Award for High Strength Binder System for Additive Manufacturing

Prize: Honorary award

Description

Binder jetting is an additive manufacturing technology that works by layering powdered materials and cohering them into desired shapes using a liquid binding material deposited via inkjet. Though these liquid binders are vital ingredients in the binder jetting process, few improvements have been made on binder technology in recent decades.

ORNL researchers have developed a novel liquid binder that is stronger, more functional and more environmentally friendly than the most widely used liquid binder, furan. The binder can be deposited in large quantities while also maintaining sharp features in an object’s design, meaning the strength can be finely tuned to its applications. Uniquely, parts printed with the binder can be stronger than cement.

These parts are often custom casts or molds used for traditional manufacturing techniques. Because the binder is water soluble, these molds can be removed simply by washing them away, which could enable the creation of more complex parts than what is currently achievable.

Funding for this project came from the DOE Energy Efficiency and Renewable Energy Advanced Manufacturing Office and ExOne.

Tomonori Saito and Amy Elliott led the ORNL portion of the development team, which included ORNL’s Lu Han, as well as Dustin Gilmer and Michelle Lehmann of the University of Tennessee’s Bredesen Center for Interdisciplinary Research and Graduate Education.

    Fingerprint